REZUM and HoLEP

MR. HRISHI JOSHI

CONSULTANT UROLOGICAL SURGEON AND HONORARY LECTURER

UNIVERSITY HOSPITAL OF WALES AND SCHOOL OF MEDICINE

Treatment Options for BPH

- Watchful waiting
- Pharmacologic therapy
 - Alpha 1-adrenergic blockers
 - PDE-5 inhibitor (tadalafil)
 - 5-ARIs
 - Combination therapy
- Surgery
 - Open surgery (large prostate)
 - TURP(mono or bipolar)
 - Laser Vaporiza&on & Enucleation Water Jet
- Thermal Ablation
 - TUMT TUNA
 - Steam (Rezum)
- Prostatic Urethral Lift (UroLift)

Convective water vapour treatment (Rezum)

- The Rezum convective water vapour energy (WAVE) to ablate prostatic tissue.
- Performed in an office or hospital setting using oral pain medication
- Shown to be safe and efficacious in both Phase I and II studies
- MRI study: convective WAVE technology created thermal lesions in the prostate tissue, which then underwent near complete resolution by 3 and 6 months after treatment.
- Associated with a one-third reduction in overall prostate and transition zone volumes

Rezum - Results

- Pilot studies (n=65) significant clinical improvements at 1, 3, 6, and 12 months.
- IPSS (reduction of up to 13 points respectively) and
- Q_{max} (increasing by up to 4.6 mL/s, respectively).
- At 12 months
 - 56% improvement in IPSS,
 - 61% improvement in QoL and
 - 87% improvement in Q_{max}
- Sexual function was maintained

Outcomes with comparable treatments

How do they stack up? Mount Effectiveness

	UroLift ^{1,2}	Rezum ³
AUASI Improvement at 1 yr	-10.8 -11.4	-11.7
Qmax Improvement at 1 yr [mL/s]	4.0 4.0	5.1
QOL Improvement at 1 yr	-2.4 -2.8	-2.3
Retreatment Rate		
1 yr	5%	2.2%
2 yr	7.5%	4.4%
3 yr	10.5%	
4 yr	13.6%	
5 yr	13.6%	

1.Roehrborn EAU2017, Urol Clin N Am 2016; 2.Sonksen Eur Urol 2015 and Gratzke BJUI 2016; 3.McVary J Urol 2015 and Roehrborn J Urol 2017.

Outcomes with comparable treatments

How do they stack up? Patient Experience

	UroLift ¹	Rezum ²		
Local anesthesia compatible?				
Topical lidocaine / Oral Sedative	98%	69%		
Prostate Block	2%	21%		
IV Sedation		10%		
Is it tolerable? [Pain VAS]				
Treatment	5.0 ± 3.0	6.4 ± 2.6		
Rigid Cystoscopy Control	4.8 ± 2.9	3.8 ± 2.8		
Difference	0.2 (4%)	2.6 (68%)		

1.Roehrborn J Urol 2013; 2.McVary J Urol 2015.

Outcomes with comparable treatments

How do they stack up? // Patient Experience

Mount Sinai

	UroLift	Rezum	
Can I avoid a catheter?			
No Post Op Catheter	68% ¹ to 80% ²	10% ³	
Mean Duration [days]	0.9 ^{1,2}	3.4	
Retention	0.7% ¹	3.7%	
When can I get back to normal life?			
"Return to Pre-Op Activity" [days]	8.6 ± 7.5^{1} 5.1 ± 5.8 ²	Median = 4 ³ [0-90]	
"Return to Work" [days]	2.8 ± 3.7^2	Not reported	

1.Roehrborn J Urol 2013; 2.Shore Can J Urol 2013; 3.McVary J Urol 2015

Limitations

- Relatively new technology
- No long term data
- Heating technologies in the past have failed
- How to predict precise amount of heated tissue and size reduction ? Unpredictability
- ? Work well for all sizes and median lobe?
- Limited data against competing technologies
- Current place between medical and surgical treatment

HoLEP results									
	Number of patients	Mean patient age (years)	Mean operative time* (min)	Mean enucleate d tissue weight (grams)	Mean length of hospital stay (days)	Mean pre-op Qmax (cc/sec)	Mean post-op Qmax (cc/sec)	Mean pre-op AUA SS	Mean post-op AUA SS
Fraundorfer, et al[<u>22</u>]	14	72.0	98	37.5	1.1	7.0	25.2	21.2	7.2
Gilling, et al[<u>25</u>]	64	70.2	59.2	35.5	1.3	8.9	23.4	23.0	8.6
Moody, et al[<mark>26</mark>]	61	71.3	117	48.0	1.2	7.7	-	20.4	6.7
Gilling, et al. $\begin{bmatrix} 27 \end{bmatrix}^{\#}$	43	73.8	82.5	61.8	1.2	9.0	24.8	23.5	2.8
Moody, et al. [<u>23]</u> [#]	10	74.8	197	151.0	2.1	-	-	19.0	6.3
Kuntz and Lehrich[<u>28</u>] [#]	60	69.2	135.9	83.9	2.9	3.8	27.6	22.1	3.3

QOL, Qmax ml/s and IPSS outcomes at 10 years are comparable to outcomes at 1 year

Outcomes of HoLEP

HoLEP – 23 RCTs 2245 patients •14 Vs TURP/TUVP •1 Vs Gyrus •2 Vs Open •1 Vs Laser BNI •2 KTP laser

(Ahyai et al Eur Urology 2010)

Improvements: •Max Flow rate – 300-600% @12 months Prostate volume reduction: 76-82% •IPSS – 80-90% @12 months •PSA reduction – 85% less blood loss and transfusion (p = 0.001), shorter catheterization time (p < 0.001),• shorter hospital LOS (p = 0.001),

Meta-analyses of functional outcomes after prostatic tissue ablation: Comparison of different transurethral procedures and TURP

Complications

<u>Common</u> (>10%) - Mild burning, bleeding and frequency of urination after the procedure

- -60=70% dry ejaculation
- Re-treatment Possible need to repeat treatment later due to re-obstruction (approx 5-10%)
- Loss of urinary control (incontinence) which reduces within 6 weeks (10- 15%)

<u>Occasional</u> - Bleeding requiring return to theatre and/or blood transfusion (less than 2%)

<u>Rare</u> (<2%) - Retained tissue fragments which may require a second telescopic procedure for their removal

<u>Very Rare</u> - perforation of the bladder requiring treatment

HoLEP has fewer complications and lower re-operation rate^{1,2,3,7,8,9,10}

Post HoLEP incontinence

TUI, defined as any type of urine leakage, occurred after HoLEP in some patients, most of whom recovered within three months.

Stress urinary incontinence occurred in only 4% of patients after HoLEP.

Age and total operation time were associated with the occurrence of postoperative TUI. – World Journal of Men's health 2015

Incontinence

- Pelvic floor muscle re-education pre and post operative, produces a quicker improvement of urinary symptoms and of quality of life in patients after TURP
- Intra-detrusor Botox injection and peri-urethral bulking agents in refractory
- Artificial sphincter < 0.1%

Cost savings – Hospital stay alone UHW audit

- Hospital stay: £536/ day
- Average cost for hospital stay per TURP: £1,286.40
- Average cost for hospital stay per HoLEP: <u>£562.80</u>
- Potential direct saving on hospital stay /100 patients: £72K or more

£723.60

• Savings more – larger prostates

Indirect Cost Savings

• Other advantages with HoLEP (<u>Difficult cost</u> <u>calculations</u>):

• Minimal/ no post operative irrigation

- Hospital bed for other procedures (pre + post procedure)
- Nursing care
- Holmium laser + stones

• TURP cancellations – a significant bed impact ?

THANK YOU